Convergence of Evolution Strategies with Covariance Matrix Adaptation (CMA-ES)

Armand Gissler

Tuesday 26th September, 2023

CMAP, École polytechnique & Inria (with Anne Auger & Nikolaus Hansen)

Consider the optimisation problem

$$\min_{x \in \mathbb{R}^d} f(x) \tag{P}$$

Consider the optimisation problem

with
$$x \in \mathbb{R}^d \longrightarrow f(x)$$
 $f: \mathbb{R}^d \to \mathbb{R} \longrightarrow f(x)$

Consider the optimisation problem

$$\min_{x \in \mathbb{R}^d} f(x) \tag{P}$$

with

$$x \in \mathbb{R}^d \longrightarrow f: \mathbb{R}^d \to \mathbb{R} \longrightarrow f(x)$$

 \Rightarrow we only have access to a minimum amount of informations on f

Consider the optimisation problem

$$\min_{x \in \mathbb{R}^d} f(x) \tag{P}$$

with

$$x \in \mathbb{R}^d \longrightarrow f: \mathbb{R}^d \to \mathbb{R} \longrightarrow f(x)$$

 \Rightarrow we only have access to a minimum amount of informations on f (in particular no information on the derivatives of f)

Consider the optimisation problem

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (P)

with

$$x \in \mathbb{R}^d \longrightarrow f: \mathbb{R}^d \to \mathbb{R} \longrightarrow f(x)$$

 \Rightarrow we only have access to a minimum amount of informations on f (in particular no information on the derivatives of f)

CMA-ES approximates the minimum x^* of f by a multivariate normal distribution $\mathcal{N}(m, C)$

Consider the optimisation problem

$$\min_{x \in \mathbb{R}^d} f(x) \tag{P}$$

with

$$x \in \mathbb{R}^d \longrightarrow f: \mathbb{R}^d \to \mathbb{R}$$

 \Rightarrow we only have access to a minimum amount of informations on f (in particular no information on the derivatives of f)

CMA-ES approximates the minimum x^* of f by a multivariate normal distribution $\mathcal{N}(m, C)$ by adapting the mean $m \in \mathbb{R}^d$

Consider the optimisation problem

$$\min_{x \in \mathbb{R}^d} f(x) \tag{P}$$

with

$$x \in \mathbb{R}^d \longrightarrow f: \mathbb{R}^d \to \mathbb{R} \longrightarrow f(x)$$

 \Rightarrow we only have access to a minimum amount of informations on f (in particular no information on the derivatives of f)

CMA-ES approximates the minimum x^* of f by a multivariate normal distribution $\mathcal{N}(m, C)$ by adapting the mean $m \in \mathbb{R}^d$ and the covariance matrix $C \in \mathcal{S}^d_{++}$.

CMA-ES: algorithm presentation

Level sets representation

Level sets representation

Level sets representation

Level sets representation

Level sets representation

Level sets representation

Algorithm 1 CMA-ES

 $\overline{\mathbf{Goal:} \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})}$

Algorithm 1 CMA-ES

 $\overline{\mathbf{Goal:} \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})}$

Given: $m_0 \in \mathbb{R}^d$, $C_0 \in \mathcal{S}_{++}^d$

Algorithm 1 CMA-ES

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Given: $m_0 \in \mathbb{R}^d$, $C_0 \in \mathcal{S}^d_{++}$

For t = 0, 1, 2, ...:

1. $x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, C_t)$

 λ population size

Algorithm 1 CMA-ES

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Given:
$$m_0 \in \mathbb{R}^d$$
, $C_0 \in \mathcal{S}^d_{++}$

For t = 0, 1, 2, ...:

1.
$$x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, C_t)$$

2. sort $f(x_{t+1}^i)$:

 λ population size

Algorithm 1 CMA-ES

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Given:
$$m_0 \in \mathbb{R}^d$$
, $C_0 \in \mathcal{S}^d_{++}$

For t = 0, 1, 2, ...:

1.
$$x_{t+1}^1, \dots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, C_t)$$

2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

 λ population size

Algorithm 1 CMA-ES

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Given:
$$m_0 \in \mathbb{R}^d$$
, $C_0 \in \mathcal{S}_{++}^d$

For t = 0, 1, 2, ...:

1.
$$x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, C_t)$$

2. sort $f(x_{t+1}^i)$: $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

3.
$$m_{t+1} = \sum_{i=1}^{\mu} w_i x_{t+1}^{i:\lambda}$$

 λ population size

 μ parent number

Algorithm 1 CMA-ES

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Given:
$$m_0 \in \mathbb{R}^d$$
, $C_0 \in \mathcal{S}_{++}^d$

For t = 0, 1, 2, ...:

1.
$$x_{t+1}^1,\ldots,x_{t+1}^{\lambda}\sim\mathcal{N}(m_t,C_t)$$

2. sort
$$f(x_{t+1}^i)$$
:
 $f(x_{t+1}^{1:\lambda}) \leqslant \cdots \leqslant f(x_{t+1}^{\lambda:\lambda})$

3.
$$m_{t+1} = \sum_{i=1}^{\mu} w_i x_{t+1}^{i:\lambda}$$

4.
$$C_{t+1} = (1-c)C_t + c\sum_{i=1}^{\mu} w_i \left[x_{t+1}^{i:\lambda} - m_t \right] \left[x_{t+1}^{i:\lambda} - m_t \right]^T$$

 λ population size

 μ parent number

Linear convergence

We observe

$$m_t \xrightarrow[t \to \infty]{} x^* \in \arg\min f$$

and

$$C_t \xrightarrow[t \to \infty]{} H^{-1}$$

We observe

$$m_t \xrightarrow[t \to \infty]{} x^* \in \arg\min f$$

and

$$C_t \xrightarrow[t \to \infty]{} H^{-1}$$

$$\frac{\|m_t - x^*\|}{\|m_0 - x^*\|}$$

$$\log\frac{\|m_t-x^*\|}{\|m_0-x^*\|}$$

$$\log \frac{\|m_t - x^*\|}{\|m_0 - x^*\|} = -\operatorname{CR} \times t$$

$$\frac{1}{t}\log\frac{\|m_t - x^*\|}{\|m_0 - x^*\|} = -CR$$

$$\lim_{t\to\infty}\frac{1}{t}\log\frac{\|m_t-x^*\|}{\|m_0-x^*\|}=-\mathrm{CR}$$

$$\lim_{t\to\infty}\frac{1}{t}\log\frac{\|m_t-x^*\|}{\|m_0-x^*\|}=-\mathrm{CR}$$

Convergence analysis via Markov

chains

A **Markov chain** is a random sequence $(\theta_t)_{t\in\mathbb{N}}$ such that

Distribution
$$(\theta_{t+1} \mid \theta_0, \dots, \theta_t)$$
 = Distribution $(\theta_{t+1} \mid \theta_t)$

Presentation of the algorithm

Algorithm 1 CMA-ES

Goal: $\min_{x \in \mathbb{R}^d} f(x)$

Given:
$$m_0 \in \mathbb{R}^d$$
, $C_0 \in \mathcal{S}_{++}^d$

For t = 0, 1, 2, ...:

1.
$$x_{t+1}^1,\ldots,x_{t+1}^{\lambda}\sim\mathcal{N}(m_t,C_t)$$

2. sort
$$f(x_{t+1}^i)$$
:
 $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

3.
$$m_{t+1} = \sum_{i=1}^{\mu} w_i x_{t+1}^{i:\lambda}$$

4.
$$C_{t+1} = (1-c)C_t + c\sum_{i=1}^{\mu} w_i \left[x_{t+1}^{i:\lambda} - m_t\right] \left[x_{t+1}^{i:\lambda} - m_t\right]^T$$

 λ population size

 μ parent number

A **Markov chain** is a random sequence $(\theta_t)_{t\in\mathbb{N}}$ such that

Distribution
$$(\theta_{t+1} \mid \theta_0, \dots, \theta_t)$$
 = Distribution $(\theta_{t+1} \mid \theta_t)$

• The Markov chain $(\theta_t)_{t\in\mathbb{N}}$ is **irreducible** if any state is reachable in finite time with positive probability.

Irreducibility of CMA-ES

The Markov chain $(\theta_t)_{t\in\mathbb{N}}$ is **irreducible** if any state is reachable in finite time with positive probability.

A **Markov chain** is a random sequence $(\theta_t)_{t\in\mathbb{N}}$ such that

Distribution
$$(\theta_{t+1} \mid \theta_0, \dots, \theta_t)$$
 = Distribution $(\theta_{t+1} \mid \theta_t)$

- The Markov chain $(\theta_t)_{t\in\mathbb{N}}$ is **irreducible** if any state is reachable in finite time with positive probability.
- Then, it admits a **period** $P\geqslant 1$. When P=1, $(\theta_t)_{t\in\mathbb{N}}$ is aperiodic.

A **Markov chain** is a random sequence $(\theta_t)_{t\in\mathbb{N}}$ such that

Distribution
$$(\theta_{t+1} \mid \theta_0, \dots, \theta_t)$$
 = Distribution $(\theta_{t+1} \mid \theta_t)$

• The Markov chain $(\theta_t)_{t\in\mathbb{N}}$ is **positive recurrent** if there exists a unique **invariant** probability measure π , i.e.,

$$\theta_t \sim \pi \Rightarrow \theta_{t+1} \sim \pi$$

A **Markov chain** is a random sequence $(\theta_t)_{t\in\mathbb{N}}$ such that

Distribution
$$(\theta_{t+1} \mid \theta_0, \dots, \theta_t)$$
 = Distribution $(\theta_{t+1} \mid \theta_t)$

• The Markov chain $(\theta_t)_{t\in\mathbb{N}}$ is **positive recurrent** if there exists a unique **invariant** probability measure π , i.e.,

$$\theta_t \sim \pi \Rightarrow \theta_{t+1} \sim \pi$$

 $(\pi \text{ is a fixed point for } (\theta_t)_{t \in \mathbb{N}})$

A **Markov chain** is a random sequence $(\theta_t)_{t\in\mathbb{N}}$ such that

Distribution
$$(\theta_{t+1} \mid \theta_0, \dots, \theta_t)$$
 = Distribution $(\theta_{t+1} \mid \theta_t)$

• The Markov chain $(\theta_t)_{t\in\mathbb{N}}$ is **positive recurrent** if there exists a unique **invariant** probability measure π , i.e.,

$$\theta_t \sim \pi \Rightarrow \theta_{t+1} \sim \pi$$
 (π is a fixed point for $(\theta_t)_{t\in \mathbb{N}}$)

 If the chain is irreducible, aperiodic, positive recurrent, then a Law of Large Numbers (LLN) holds

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=0}^{T-1}f\left(\theta_{t}\right)=\int f(\theta)\,d\pi(\theta).$$

CMA-ES as a Markov chain

covariance matrix
$$\theta_t = (\underbrace{m_t}, \overbrace{C_t})$$

defines a Markov chain

CMA-ES as a Markov chain

$$heta_t = (\underbrace{m_t}_{ ext{mean}}, \overbrace{C_t}_{ ext{c}})$$

defines a Markov chain

Question: Could we use the **LLN** for Markov chains to prove the **linear convergence** of CMA-ES?

Invariant measure for CMA-ES?

If π is an invariant measure of $(m_t, C_t)_{t \in \mathbb{N}}$

Invariant measure for CMA-ES?

If π is an invariant measure of $(m_t, C_t)_{t \in \mathbb{N}}$

$$(m_t, C_t) \sim \pi \Rightarrow (m_{t+1}, C_{t+1}) \sim \pi$$

Invariant measure for CMA-ES?

If π is an invariant measure of $(m_t, C_t)_{t \in \mathbb{N}}$

$$(m_t, C_t) \sim \pi \Rightarrow (m_{t+1}, C_{t+1}) \sim \pi$$

Not possible if $m_t o x^*$ and $C_t o 0$.

$$\lim_{t\to\infty}\frac{1}{t}\log\frac{\|m_t-x^*\|}{\|m_0-x^*\|}=-\mathrm{CR}$$

$$\|m_t - x^*\|$$
 and $\lambda_{\mathsf{min}}(\mathit{C}_t) o 0$

$$\|m_t - x^*\|$$
 and $\lambda_{\min}(C_t) o 0$
$$z_t \stackrel{\mathrm{def}}{=} \frac{m_t - x^*}{\sqrt{\lambda_{\min}(C_t)}} \qquad \Sigma_t \stackrel{\mathrm{def}}{=} \frac{C_t}{\lambda_{\min}(C_t)}$$

$$\|m_t - x^*\|$$
 and $\lambda_{\min}(C_t) o 0$
$$z_t \stackrel{\mathrm{def}}{=} \frac{m_t - x^*}{\sqrt{\lambda_{\min}(C_t)}} \qquad \Sigma_t \stackrel{\mathrm{def}}{=} \frac{C_t}{\lambda_{\min}(C_t)}$$

The sequence $(z_t, \Sigma_t)_{t \in \mathbb{N}}$ might eventually be **stationary**

$$\|m_t - x^*\|$$
 and $\lambda_{\min}(C_t) o 0$
$$z_t \stackrel{\text{def}}{=} \frac{m_t - x^*}{\sqrt{\lambda_{\min}(C_t)}} \qquad \Sigma_t \stackrel{\text{def}}{=} \frac{C_t}{\lambda_{\min}(C_t)}$$

The sequence $(z_t, \Sigma_t)_{t \in \mathbb{N}}$ might eventually be stationary

Proposition (Normalized Markov chain)

$$(z_t, \Sigma_t)_{t \in \mathbb{N}}$$

is a Markov chain.

Normalization

$$\|m_t - x^*\|$$
 and $\lambda_{\min}(\mathcal{C}_t) o 0$
$$z_t \stackrel{\mathrm{def}}{=} \frac{m_t - x^*}{\sqrt{\lambda_{\min}(\mathcal{C}_t)}} \qquad \Sigma_t \stackrel{\mathrm{def}}{=} \frac{\mathcal{C}_t}{\lambda_{\min}(\mathcal{C}_t)}$$

The sequence $(z_t, \Sigma_t)_{t \in \mathbb{N}}$ might eventually be stationary

Proposition (Normalized Markov chain)

$$(z_t, \Sigma_t)_{t \in \mathbb{N}}$$

is a Markov chain. (if f is scaling-invariant)

Scaling-invariant functions

Scaling-invariant functions

$$f\left(x_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(x_{t+1}^{\lambda:\lambda}\right)\Leftrightarrow f\left(z_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(z_{t+1}^{\lambda:\lambda}\right)$$

Algorithm

Algorithm 1 CMA-ES

Goal:
$$\min_{x \in \mathbb{R}^d} f(x)$$

Given:
$$m_0 \in \mathbb{R}^d$$
, $C_0 \in \mathcal{S}_{++}^d$

For t = 0, 1, 2, ...:

1.
$$x_{t+1}^1, \ldots, x_{t+1}^{\lambda} \sim \mathcal{N}(m_t, C_t)$$

2. sort
$$f(x_{t+1}^i)$$
:
 $f(x_{t+1}^{1:\lambda}) \leq \cdots \leq f(x_{t+1}^{\lambda:\lambda})$

3.
$$m_{t+1} = \sum_{i=1}^{\mu} w_i x_{t+1}^{i:\lambda}$$

4.
$$C_{t+1} = (1-c)C_t + c\sum_{i=1}^{\mu} w_i \left[x_{t+1}^{i:\lambda} - m_t \right] \left[m_{t+1}^{i:\lambda} - m_t \right]^T$$

 λ population size

$$\mu$$
 parent number

Algorithm

Algorithm 1 normalized CMA-ES

Goal: Converge to π

Given:
$$\mathbf{z}_0 \in \mathbb{R}^d$$
, $\mathbf{\Sigma}_0 \in \mathcal{S}_{++}^d$

For t = 0, 1, 2, ...:

1.
$$z_{t+1}^1, \ldots, z_{t+1}^{\lambda} \sim \mathcal{N}(z_t, \Sigma_t)$$

2. sort $f(z_{t+1}^i)$:

$$f\left(z_{t+1}^{1:\lambda}\right)\leqslant\cdots\leqslant f\left(z_{t+1}^{\lambda:\lambda}\right)$$

3.
$$\tilde{z}_{t+1} = \sum_{i=1}^{\mu} w_i z_{t+1}^{i: \lambda}$$

4.
$$\tilde{\Sigma}_{t+1} = (1-c)\Sigma_t + c\sum_{i=1}^{\mu} w_i \left[z_{t+1}^{i:\lambda} - z_t \right] \left[z_{t+1}^{i:\lambda} - z_t \right]^T$$

 λ population size

 μ parent number

Algorithm

Algorithm 1 normalized CMA-ES

Goal: Converge to π

Given:
$$\mathbf{z}_0 \in \mathbb{R}^d$$
, $\mathbf{\Sigma}_0 \in \mathcal{S}_{++}^d$

For t = 0, 1, 2, ...:

1.
$$z_{t+1}^1, \ldots, z_{t+1}^{\lambda} \sim \mathcal{N}(z_t, \Sigma_t)$$

2. sort
$$f(z_{t+1}^i)$$
:
 $f(z_{t+1}^{1:\lambda}) \leqslant \cdots \leqslant f(z_{t+1}^{\lambda:\lambda})$

3.
$$\tilde{z}_{t+1} = \sum_{i=1}^{\mu} w_i z_{t+1}^{i: \lambda}$$

5.
$$z_{t+1} = \tilde{z}_{t+1} / \lambda_{\min}^{1/2} (\tilde{\Sigma}_{t+1})$$

 $\Sigma_{t+1} = \tilde{\Sigma}_{t+1} / \lambda_{\min} (\tilde{\Sigma}_{t+1})$

1.
$$(\theta_t)_{t\in\mathbb{N}}=(z_t,\Sigma_t)_{t\in\mathbb{N}}$$
 is irreducible and aperiodic;

- 1. $(\theta_t)_{t\in\mathbb{N}}=(z_t,\Sigma_t)_{t\in\mathbb{N}}$ is irreducible and aperiodic ;
- 2. $(\theta_t)_{t\in\mathbb{N}}$ is positive recurrent;

- 1. $(\theta_t)_{t\in\mathbb{N}}=(z_t,\Sigma_t)_{t\in\mathbb{N}}$ is irreducible and aperiodic ;
- 2. $(\theta_t)_{t\in\mathbb{N}}$ is positive recurrent;
- 3. By 1. and 2., it follows a LLN

- 1. $(\theta_t)_{t\in\mathbb{N}} = (z_t, \Sigma_t)_{t\in\mathbb{N}}$ is irreducible and aperiodic;
- 2. $(\theta_t)_{t\in\mathbb{N}}$ is positive recurrent;
- 3. By 1. and 2., it follows a LLN and

$$\frac{1}{T}\log\frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \frac{1}{T}\sum_{t=0}^{T-1}\log\frac{\|z_{t+1}\|}{\|z_t\|} - \frac{1}{2}\log\lambda_{\min}(\tilde{\Sigma}_{t+1})$$

Suppose

$$\theta_{t+1} = F(\theta_t, u_{t+1})$$

Suppose

$$\theta_{t+1} = F(\theta_t, u_{t+1})$$

where $u_{t+1} \sim p_{\theta_t}$.

Suppose

$$\theta_{t+1} = F(\theta_t, u_{t+1})$$

where $u_{t+1} \sim p_{\theta_t}$.

If there exists $\theta^* \in \Theta$ and $u^* \in U$

Suppose

$$\theta_{t+1} = F(\theta_t, u_{t+1})$$

where $u_{t+1} \sim p_{\theta_t}$.

If there exists $\theta^* \in \Theta$ and $u^* \in U$ such that

ullet can be reached from any starting state of Θ ;

Suppose

$$\theta_{t+1} = F(\theta_t, u_{t+1})$$

where $u_{t+1} \sim p_{\theta_t}$.

If there exists $\theta^* \in \Theta$ and $u^* \in U$ such that

- ullet can be reached from any starting state of Θ ;
- $p_{\theta^*}(u^*) > 0$;

Suppose

$$\theta_{t+1} = F(\theta_t, u_{t+1})$$

where $u_{t+1} \sim p_{\theta_t}$.

If there exists $\theta^* \in \Theta$ and $u^* \in U$ such that

- θ^* can be reached from any starting state of Θ ;
- $p_{\theta^*}(u^*) > 0$;
- rank $\partial_u F(\theta^*, u^*) = \dim \Theta$;

Suppose

$$\theta_{t+1} = F(\theta_t, u_{t+1})$$

where $u_{t+1} \sim p_{\theta_t}$.

If there exists $\theta^* \in \Theta$ and $u^* \in U$ such that

- θ^* can be reached from any starting state of Θ ;
- $p_{\theta^*}(u^*) > 0$;
- rank $\partial_u F(\theta^*, u^*) = \dim \Theta$;

then $(\theta_t)_{t\in\mathbb{N}}$ is irreducible and aperiodic.

Proposition

Under assumptions on f, $\theta^* = (0, I_d)$ satisfies the previous conditions.

Proposition

Under assumptions on f, $\theta^* = (0, I_d)$ satisfies the previous conditions.

Corollary

Then

$$(z_t, \Sigma_t)_{t \in \mathbb{N}}$$

is irreducible and aperiodic.

$$(z_t, \Sigma_t)_{t \in \mathbb{N}}$$

is positive recurrent if

$$(z_t, \Sigma_t)_{t \in \mathbb{N}}$$

is positive recurrent if

• it is irreducible and aperiodic

$$(z_t, \Sigma_t)_{t \in \mathbb{N}}$$

is positive recurrent if

- it is irreducible and aperiodic
- there exists a **drift function** $V: \Theta \to [0, +\infty]$ such that

$$(z_t, \Sigma_t)_{t \in \mathbb{N}}$$

is positive recurrent if

- it is irreducible and aperiodic
- there exists a drift function $V: \Theta \to [0, +\infty]$ such that

$$\mathbb{E}_{t}\left[V\left(z_{t+1}, \Sigma_{t+1}\right)\right] \leqslant (1-\varepsilon)V\left(z_{t}, \Sigma_{t}\right)$$

outside of a compact $\mathcal{K} \subset \Theta$.

$$\mathbb{E}_{t}\left[V\left(z_{t+1}, \Sigma_{t+1}\right)\right] \leqslant (1 - \varepsilon)V\left(z_{t}, \Sigma_{t}\right)$$

$$\mathbb{E}_{t}\left[V\left(z_{t+1}, \Sigma_{t+1}\right)\right] \leqslant (1 - \varepsilon)V\left(z_{t}, \Sigma_{t}\right)$$
 outside of a compact K

$$\mathbb{E}_{t}\left[V\left(z_{t+1}, \Sigma_{t+1}\right)\right] \leqslant (1 - \varepsilon)V\left(z_{t}, \Sigma_{t}\right)$$
outside of a compact K

$$\mathbb{E}_{t}\left[V\left(z_{t+1}, \Sigma_{t+1}\right)\right] \leqslant (1 - \varepsilon)V\left(z_{t}, \Sigma_{t}\right)$$
 outside of a compact K

Theorem (Drift condition for the normalized chain)

When minimizing a spherical function $f: x \mapsto g(x^Tx)$ then $(z_t, \Sigma_t)_{t \in \mathbb{N}}$ satisfies a drift condition with

$$V(z, \Sigma) = \alpha \times \frac{\|\sqrt{\Sigma}z\|^2}{\lambda_{\max}(\Sigma)} + \beta \times \|\Sigma\|$$

Theorem (Drift condition for the normalized chain)

When minimizing a spherical function $f: x \mapsto g(x^Tx)$ then $(z_t, \Sigma_t)_{t \in \mathbb{N}}$ satisfies a drift condition with

$$V(z, \Sigma) = \alpha \times \frac{\|\sqrt{\Sigma}z\|^2}{\lambda_{\max}(\Sigma)} + \beta \times \|\Sigma\|$$

This can be generalized to **ellipsoid** functions $f(x) = g(x^T H x)$ using the **affine-invariance** of CMA-ES.

Affine-Invariance

Convergence

Theorem

When
$$f = g(x^T Hx)$$
, then

$$\lim_{T \to \infty} \frac{1}{T} \log \frac{\|m_T - x^*\|}{\|m_0 - x^*\|} = \lim_{t \to \infty} \mathbb{E} \left[\log \frac{\|m_{t+1} - x^*\|}{\|m_t - x^*\|} \right] = -CR$$

and

$$\lim_{t\to\infty}\mathbb{E}\left[\frac{C_t}{\det C_t}\right]\propto H^{-1}.$$

Thank you!