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Black-box optimisation and Evolution strategies

Consider the optimisation problem

min f(x) (P)

xeRd

=- we only have access to a minimum amount of informations on f
(in particular no information on the derivatives of f)

with

CMA-ES approximates the minimum x* of f by a multivariate
normal distribution A’(m, C) by adapting the mean m € R? and
the covariance matrix C € Si+.
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CMA-ES: algorithm presentation
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Convergence analysis via Markov
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Irreducibility of CMA-ES

The Markov chain (6¢):cn is irreducible if any state is reachable
in finite time with positive probability.
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A Markov chain is a random sequence (0;):en such that

Distribution (Qt—i-l ‘ 90, ey 01_-) = Distribution (9t+1 | Qt)

e The Markov chain (0;):cn is irreducible if any state is
reachable in finite time with positive probability.

e Then, it admits a period P > 1. When P =1, (0;)ten is
aperiodic.
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A Markov chain is a random sequence (0;):en such that
Distribution (6¢41 | o, . .., 0:) = Distribution (0¢41 | 6;)
e The Markov chain (0;):cn is positive recurrent if there exists
a unique invariant probability measure 7, i.e.,
O ~m =01~
(7 is a fixed point for (6;)ten)

o If the chain is irreducible, aperiodic, positive recurrent, then a
Law of Large Numbers (LLN) holds

Ilnoo72f(9t / 0) dr(0).
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CMA-ES as a Markov chain
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CMA-ES as a Markov chain

covariance matrix
=
0y = ( me , C )
~—
mean

defines a Markov chain

Question: Could we use the LLN for Markov chains to prove the
linear convergence of CMA-ES?
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Invariant measure for CMA-ES?

If 7 is an invariant measure of (m;, C¢)ten

(me, Ge) ~m = (Meg1, Ceq1) ~

Not possible if my — x* and C; — 0.
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|lm: — x*|| and Amin(C¢) — 0

def my —Xx* def Ce

Zs = ——— = —
' Amin(Ct) ‘ )‘min(Ct)
The sequence (z;, Xt)ren might eventually be stationary

Proposition (Normalized Markov chain)

(zt, zt)teN

is a Markov chain. (if f is scaling-invariant)



Scaling-invariant functions
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Algorithm
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Algorithm
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1. (0¢)ten = (2t, Lt)ten is irreducible and aperiodic ;
2. (0¢)ten is positive recurrent ;

3. By 1. and 2., it follows a LLN and

T-1
1 mr — x* 1 Z 1 3
M = log Izea] — 5 log Amin(X¢41)
el 2
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Sufficient conditions for irreducibility and aperiodicity

Suppose
Orv1 = F(Or, urs1)

where up1 ~ py,.

If there exists 8* € © and u* € U such that
e 0" can be reached from any starting state of © ;
e pp-(u*) >0;
e rank d,F (6%, u*) = dim®© ;

then (0¢):en is irreducible and aperiodic.

22



Under assumptions on f, 6* = (0, l;) satisfies the previous
conditions.
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Proposition
Under assumptions on f, 6* = (0, l;) satisfies the previous
conditions.

Corollary
Then

(Zt,Z¢t) en

is irreducible and aperiodic.
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Ergodicity of the normalized chain

(2t Zt)ren

is positive recurrent if
e it is irreducible and aperiodic

e there exists a drift function V: © — [0, +o0] such that
Ee [V (ze41, Zer1)] < (1 =€)V (2, 2¢)

outside of a compact K C ©.
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Theorem (Drift condition for the normalized chain)

When minimizing a spherical function f: x — g (x' x) then
(z¢,X+t)ten satisfies a drift condition with

IvEz|)?
Amax(T)

V(z,%) = ax + B8 x|IZ]l
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Theorem (Drift condition for the normalized chain)

When minimizing a spherical function f: x — g (x' x) then
(z¢,X+t)ten satisfies a drift condition with

IvEz|)?
Amax(T)

V(z,%) = ax + B8 x|IZ]l

This can be generalized to ellipsoid functions f(x) = g(x Hx)
using the affine-invariance of CMA-ES.
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Affine-Invariance

min f(x)

(mo, Co) (m1, G)
| (Ut
(mf),C(’)) min f(Bx + b) (m/pC{)
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Convergence

When f = g(xT Hx), then

1 . * _ *
im L iog T =X _ i g [jog 1Mo =] _ g
Tooo T [lmo — x*|| t—00 [lm: — x*|]

and

. C .
JAim E [det Ct] o H
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Thank you!
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