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Black-box optimisation and Evolution strategies

Consider the optimisation problem

min
x∈Rd

f (x) (P)

with

x ∈ Rd f : Rd → R f (x)

⇒ we only have access to a minimum amount of informations on f

(in particular no information on the derivatives of f )

CMA-ES approximates the minimum x∗ of f by a multivariate

normal distribution N (m, σ2C ) by adapting the mean m ∈ Rd , the

stepsize σ > 0 and the covariance matrix C ∈ Sd
++.
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� converges linearly to the minimum

� learns the inverse Hessian of a convex-quadratic function

� state-of-the-art method for difficult (derivative-free)

optimization problems such as minimization of

ill-conditionned, non-separable, discontinuous, multimodal

and/or noisy functions

� > 40 millions of downloads of two Python modules

� proofs of convergence require additional assumptions so

far
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� Without covariance matrix adaptation: Touré et al, Global

linear convergence of Evolution Strategies with recombination

on scaling-invariant functions (2021)

� With a sufficient decrease condition: Diouane et al, Globally

convergent evolution strategies (2015)

� Assuming that the covariance matrix is bounded: Akimoto et

al, Global linear convergence of evolution strategies on more

than smooth strongly convex functions (2022)

� Using a different update for the covariance matrix:

Glasmachers et al, Convergence analysis of the Hessian

estimation evolution strategy (2022)
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CMA-ES: algorithm presentation



Level sets representation
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CMA-ES : presentation

Principle of Evolution Strategies (ES) : approximate the minimum

of the function by a distribution N (m, σ2C ).

At each iteration t ∈ N, given a mean mt , a stepsize σt and a

covariance matrix Ct :

1. Generate λ offspring x it+1 ∼ N (mt , σ
2
tCt) independently

2. Rank the x it+1 w.r.t. their f -values: f
(
x1:λt+1

)
⩽ · · · ⩽ f

(
xλ :λt+1

)
3. Update the mean: mt+1

The best offspring have the largest weights: w1 ⩾ w2 . . .

4. Update the stepsize:

Increase the stepsize if the path taken by the mean is larger

than expected (assuming no selection)

5. Update the covariance matrix

Ct+1 = (1− c)Ct + c ′
(mt+1 −mt)(mt+1 −mt)

T

σ2
t
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Start from a distribution N (mt , σ
2
tCt)
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Adapt the stepsize
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Adapt the covariance matrix
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(
xλ :λt+1

)
3. Update the mean: mt+1 =

∑
wix

i :λ
t+1

The best offspring have the largest weights: w1 ⩾ w2 . . .

4. Update the stepsize:

Increase the stepsize if the path taken by the mean is larger

than expected (assuming no selection)

5. Update the covariance matrix

Ct+1 = (1− c)Ct + c
∑

wi
(x i :λt+1 −mt)(x

i :λ
t+1 −mt)
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Adapt the stepsize
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Adapt the covariance matrix
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Adapt the covariance matrix
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Linear convergence
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Summary

� We have invariance by increasing transformation, i.e. if

g : R → R is increasing, then minimizing f and g ◦ f will be

equivalent

� We observe linear convergence mt → x∗

� The covariance matrix learns the inverse Hessian of f (when f

is e.g. convex-quadratic)

Goal:

proof of linear convergence and of the

learning of the inverse Hessian
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At each iteration t ∈ N, given a mean mt , a stepsize σt and a

covariance matrix Ct :
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2
tCt) independently

2. Rank the x it+1 w.r.t. their f -values: f
(
x1:λt+1

)
⩽ · · · ⩽ f

(
xλ :λt+1

)
3. Update the mean: mt+1 =

∑
wix

i :λ
t+1

The best offspring have the largest weights: w1 ⩾ w2 . . .

4. Update the stepsize:

Increase the stepsize if the path taken by the mean is larger

than expected (assuming no selection)

5. Update the covariance matrix
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Analysis via Markov chains



Markov chains

A Markov chain is a random sequence (ϕt)t∈N such that

Distribution (ϕt+1 | ϕ0, . . . , ϕt) = Distribution (ϕt+1 | ϕt)

� The Markov chain (ϕt)t∈N is irreducible if all states are

reachable in finite time with positive probability.

� A probability distribution π is invariant for the Markov chain

(ϕt)t∈N when

ϕt ∼ π ⇒ ϕt+1 ∼ π

(π is a ”fixed point” for (ϕt)t∈N)

� The Markov chain is ergodic when it satisfies the following

LLN

lim
T→∞

1

T

T−1∑
t=0

f (ϕt) =

∫
f (x)π(dx).

29
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CMA-ES as a Markov chain

Consider the random sequence

( mt︸︷︷︸
mean

,

stepsize︷︸︸︷
σt , Ct︸︷︷︸
covariance matrix

)

This defines a Markov chain!

Question: Could we use the LLN for Markov chains to prove linear

convergence for CMA-ES?

30
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Invariant measure for CMA-ES?

Suppose that (mt , σt ,Ct)t∈N has an invariant measure π.

(mt , σt ,Ct) ∼ π ⇒ (mt+1, σt+1,Ct+1) ∼ π

We do not progress towards the optimum anymore! The existence

of an invariant measure seems to be incompatible with the

convergence to the optimum.
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Linear convergence
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||mt x * ||
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max(Ct)
min(Ct)

lim
t→∞
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t
log

∥mt − x∗∥
∥m0 − x∗∥

= −CR
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Normalization

∥mt − x∗∥, σt and λmin(Ct) → 0

Zt
def
=

mt − x∗

σt
√

λmin(Ct)

The sequence (Zt)t∈N could eventually become stationary

Proposition (Normalized Markov chain)

The sequence (
Zt ,

Ct

λmin(Ct)

)
t∈N

defines a Markov chain.

(if f is scaling-invariant)
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Scaling-invariant functions
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Irreducibility of CMA-ES

A Markov chain (ϕt)t∈N is irreducible if all states are reachable in

finite time with positive probability.
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f : x (1 x1)2 + 100(x2 x2
1)2

Starting distribution
Final distribution

Given a starting and a final distributions, can we reach the final

distribution in finite time with positive probability?
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Theorem (Irreducibility of the normalized chain)

When minimizing a scaling-invariant function f with

Lebesgue-negligible level sets, the sequence(
Zt ,

Ct

λmin(Ct)

)
t∈N

defines a irreducible, aperiodic Markov chain, and compact sets

are small sets.
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Ergodicity of the normalized chain2

(
Zt ,

Ct

λmin(Ct)

)
t∈N

is ergodic if

� it is irreducible and aperiodic

� it satisfies the following drift condition: ∃V : X → [0,+∞]

Et

[
V

(
Zt+1,

Ct+1

λmin(Ct+1)

)]
⩽ (1− ε)V

(
Zt ,

Ct

λmin(Ct)

)

for
(
Zt ,

Ct
λmin(Ct)

)
outside of a compact K.

The function V is called the potential function or the drift

function or the Lyapunov function.

2Sean P. Meyn and Richard L. Tweedie. Markov Chains and
Stochastic Stability. Springer Science & Business Media, Dec. 2012.

isbn: 978-1-4471-3267-7. 37
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Drift condition

Et

[
V

(
Zt+1,

Ct+1

λmin(Ct+1)

)]
⩽ (1− ε)V

(
Zt ,

Ct

λmin(Ct)

)

outside of a compact K
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Theorem (Drift condition for the normalized chain)

When minimizing a spherical function f : x 7→ g
(
xT x

)
(g : R → R increasing), then the irreducible, aperiodic Markov

chain (Zt ,Ct/λmin(Ct))t∈N satisfies a Foster-Lyapunov condition

with the potential defined by

V (Z ,C ) =
d∑

k=1

{
λk(C )

λ1(C )
|⟨vk(C ),Z ⟩|2

}
+ β × Cond(C )

This can be generalized to when minimizing ellipsoid functions

f (x) = g(xTHx) using the affine-invariance of CMA-ES.
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Affine-Invariance

(m0, σ0,C0) (m1, σ1,C1)

(m′
0, σ

′
0,C

′
0) (m′

1, σ
′
1,C

′
1)

min f (x)

min f (Bx + b)

Ψ Ψ−1

40



Proof of linear convergence

1

T
log

∥mT − x∗∥
∥m0 − x∗∥

→ −CR?
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In progress

� Proof of irreducibility of a normalized chain

� Found a potential function on which we have a drift condition

for ergodicity

� Proof of linear convergence

� When minimizing a convex-quadratic function

E
[

Ct

normalization

]
−→
t→∞

constant× H−1
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Thank you!
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